Connect with us

La Ciencia y Tecnología

Estudian la maquinaria de replicación del nuevo coronavirus

Published

on

La idea es observar los mecanismos de edición por los cuales la polimerasa replica el genoma del virus y así detener su propagación

Días después de declarar al covid-19 como una pandemia, la OMS anunció la puesta en marcha de un ensayo clínico internacional denominado “Solidaridad”, con el objetivo de encontrar con rapidez un medicamento eficaz contra la infección, algunas de las sustancias estudiadas mostraron retrasar la progresión de la enfermedad o mejorar la tasa de supervivencia.

Bajo esa premisa, un grupo de investigación, adscrito a la Unidad de Genómica Avanzada (UGA-Langebio) del Cinvestav, emprendió un estudio apoyado por el Gobierno del estado de Hidalgo en colaboración con el Instituto Paul Scherrer (PSI), con el objetivo de analizar a nivel atómico la maquinaria que replica el genoma del SARS-CoV-2 en el Sincrotrón Suizo (SLS).

A decir de Luis G. Brieba de Castro, líder del proyecto, el estudio de los ácidos nucleicos es importante porque los seres vivos dependen de su metabolismo por enzimas especializadas denominadas polimerasas de ácidos nucleicos. Durante el proceso de infección por covid-19 el virus debe replicarse y un aspecto importante de sus polimerasas de ácidos nucleicos, es que éstas contienen un dominio de edición asociado y cuando incorporan un nucleótido erróneo son capaces de reconocer el error y editarlo.

En organismos como el ser humano, sus polimerasas replicativas se equivocan una vez por cada 10 millones de eventos, en parte por su dominio de edición y es sorprendente que las ARN polimerasas del SARS-CoV-2 cuenten con un mecanismo de edición.

“La idea es estudiar los mecanismos de edición (proceso por el cual la polimerasa edita el genoma del SARS-CoV-2) por los cuales se reconoce una equivocación y se edita; para decirlo de alguna manera, es como cuando se usaba una máquina de escribir antigua, que al cometer un error se podía poner un corrector para editarlo y así poder volver escribir sobre esa equivocación”, explicó Brieba de Castro.

Como todos los organismos vivos y los virus, el SARS-CoV-2 tiene un genoma, en su caso un genoma de ARN, que se debe duplicar y para ello cuenta con una maquinaria especial, conformada por la polimerasa de ácidos nucleicos, que contiene el dominio de esa edición, por lo tanto, los investigadores analizarán por qué y cómo se genera este proceso; de manera particular buscan estudiar el complejo de proteínas Nsp10, 12 y 14 que integran el editosoma (que corrige el error).

En particular los investigadores están interesados en estudiar los procesos de incorporación del fármaco remdesivir, hasta el momento el más prometedor para tratar covid-19, el cual es un análogo de nucleótidos y se sospecha que puede ser reconocido como una equivocación por la ARN polimerasa y ser editado por el editosoma, con lo cual se disminuye su potencial como agente terapéutico.

Al estudiar a nivel molecular la estructura del editosoma de la ARN polimerasa del SARS-CoV-2, con ayuda del Sincrotrón, y sus procesos bioquímicos ante este tipo de fármacos (que detienen la replicación del virus), se buscará si se editan o no, porque lo deseable es evitar esa acción.

Los fármacos editados se vuelven menos efectivos; por lo tanto, es importante contar con información estructural y elucidar si con pequeñas modificaciones químicas se podría evitar esa edición; si los fármacos son editados significa que hay mucho margen para el diseño de otros mejores.

Al tener una visión a nivel atómico los investigadores pueden experimentar con diversas modificaciones en los compuestos generando nuevas versiones que administren menos medicamento para inhibir la ARN polimerasa del virus.

Desde un punto de vista científico, los investigadores buscan conocer cómo funcionan los sistemas del SARS-CoV-2; al analizar las maquinarias que duplican su material genético pueden ayudar a mejorar los fármacos existentes para su tratamiento y en el diseño de una nueva generación de ellos.

Este proyecto de investigación participó en la convocatoria lanzada por el gobierno del Estado de Hidalgo, que mantiene una colaboración el sincrotrón suizo y el Instituto Paul Scherrer, la cual consiste en apoyar los gastos asociados a proyectos de investigación (reactivos, equipo, personal) y garantizar tiempo en el sincrotrón suizo para realizar estudios de difracción de rayos-X, con el propósito de dilucidar a detalle el funcionamiento molecular del SARS-CoV-2.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

La Ciencia y Tecnología

Científicos logran crear los «cristales de tiempo», un nuevo estado de la materia

Published

on

  • Un grupo de investigadores alemanes y españoles lograron demostrar la existencia de los cristales de tiempo. La teoría fue propuesta por el científico estadounidense Frank Wilczek, premio Nobel de física.


Científicos de la Universidad de Granada -España- y de la Universidad de Tübingen -Alemania- han descubierto una forma de crear cristales de tiempo, una nueva fase de la materia que emula una estructura cristalina en la cuarta dimensión, el tiempo, en lugar de solo en el espacio, a partir de fluctuaciones extremas en sistemas físicos de muchas partículas.

Los cristales de tiempo son un nuevo estado de la materia propuesto recientemente por Frank Wilczek, premio Nobel de física e integrante del Massachusetts Institute of Technology (MIT), en Estados Unidos. El hallazgo es especialmente relevante, explicaron los investigadores, en campos como la metrología, para el diseño de relojes más precisos, o en computación cuántica, donde los cristales de tiempo pueden utilizarse para simular estados fundamentales o diseñar ordenadores cuánticos más robustos.

En los cristales de tiempo -cuya existencia se sugirió por primera vez en 2012-, los átomos repiten un patrón a través de la cuarta dimensión, el tiempo, a diferencia de los cristales normales (como un diamante), que tienen átomos dispuestos en una estructura espacial repetitiva, ha informado la Universidad de Granada. Estos nuevos cristales temporales se caracterizan por realizar un movimiento periódico en el tiempo.

Los investigadores, entre ellos Rubén Hurtado Gutiérrez, Carlos Pérez Espigares y Pablo Hurtado, del departamento de Electromagnetismo y Física de la Materia de la Universidad de Granada, demuestran en este estudio que ciertas transiciones de fase dinámicas que aparecen en las fluctuaciones raras de muchos sistemas físicos rompen espontáneamente la simetría de traslación en el tiempo. 

Los científicos han propuesto un nuevo camino para usar este fenómeno natural para crear cristales de tiempo. Para realizar las simulaciones de este trabajo los científicos han empleado el superordenador Proteus, perteneciente al Instituto Carlos I de Física Teórica y Computacional de la Universidad de Granada, considerado uno de los superordenadores de cálculo científico general más potentes de España.

«La relatividad de Einstein nos enseñó que el tiempo es de alguna manera flexible, y que está inextricablemente unido al espacio en un todo que conocemos como espaciotiempo», explicó el investigador Pablo Hurtado.

Esa unificación es, sin embargo parcial, ya que el tiempo sigue siendo especial en muchos sentidos, indica el científico, que pone como ejemplo que «podemos movernos adelante y atrás entre dos puntos cualesquiera en el espacio, pero sin embargo no podemos visitar el pasado; el tiempo tiene una flecha, mientras que el espacio no tiene tal flecha».

En su estudio, los científicos proponen una ruta inexplorada hasta ahora para construir cristales de tiempo, basada en la observación reciente de ruptura espontánea de la simetría de traslación temporal en las fluctuaciones de sistemas de muchas partículas. Los resultados, dijeron los investigadores, son importantes porque abren un camino inexplorado para entender mejor el tiempo y sus simetrías, mientras que, a nivel práctico, enseñan nuevas formas de crear cristales de tiempo.

(Agencias EFE, Infobae, Granadahoy)

Continue Reading

La Ciencia y Tecnología

Mexicana de la NASA comparte su historia en BOWLS 2020

Published

on

La ingeniera mexicana que apuntó a las estrellas y las alcanzó, hoy trabaja en la NASA y comparte su experiencia para inspirar a jóvenes

“Apunta hacia la luna; si fallas, al menos estarás entre las estrellas”, dijo alguna vez el célebre astronauta Neil Amstrong, ídolo de la mexicana Ali Guarneros, quien lleva diez años laborando en el Centro de Investigación Ames en la reconocida agencia estadounidense.

La ingeniera aeroespacial ofreció una plática inspiradora acerca de su historia y las lecciones que ha aprendido en el camino durante la octava edición del congreso Building Our World Leadership Summit (BOWLS), organizado por la asociación Dar Más por México del campus Santa Fe.

La mujer de 47 años, además de contagiar la pasión que siente por la ingeniería y el espacio, invitó a la audiencia a una profunda reflexión: “¿Cuál es el impacto en tí de tus huellas? ¿Y en tu comunidad, en tu familia o en tu país? Tú tienes el poder de definir su alcance”, dijo mientras mostraba una imagen de las huellas de Neil Amstrong en la Luna.

Guarneros ha participado en un sinfín de proyectos de la NASA. Desde el icónico lanzamiento de la nave SpaceX Dragon, hasta el desarrollo del sistema de despegue del satélite Kepler, cuya misión fue buscar planetas con características similares a la Tierra.

Ali, también ha diseñado robots destinados a la investigación y exploración científica de la Antártida.

Kenia Adame, estudiante de Mercadotecnia y Comunicación y co-coordinadora de BOWLS 2020, habló con CONECTA sobre la importancia de escuchar a mujeres exitosas como Ali Guarneros dado el panorama actual.

“Hoy en día todavía existen muchas ideas erróneas sobre las mujeres y sobre lo que podemos hacer. Ali es una inspiración para niñas y mujeres de todas partes, su historia es una invitación a alcanzar nuestras metas sin importar nuestro género”, señaló.

La estudiante del Campus Santa Fe aseguró que Ali Guarneros es la representación ideal de lo que el congreso busca transmitir: la idea de que los sueños se pueden hacer realidad a pesar de las dificultades.

“El único objetivo de BOWLS es inspirar y motivar a las personas. Creo que justo en este momento de incertidumbre era un evento muy necesario”, agregó.

Una odisea hacia el espacio

Si existe una persona indicada para hablar de aprendizajes y motivar a superar las adversidades, es Ali. Su vida ha sido toda una odisea.

Originaria de la CDMX y hermana mayor de cuatro, vivió a la corta edad de 12 años el terremoto de 1985, en el que fallecieron algunos de sus familiares y amigos cercanos. Poco tiempo después, su madre tomó la decisión de mudarse a Estados Unidos, donde la joven Ali se enfrentó a un país, un idioma y una cultura extrañas.

Guarneros tuvo que dejar de lado la escuela para atender sus responsabilidades como hermana mayor, por lo que empezó a trabajar siendo aún menor de edad. Estudiar una carrera no figuraba entre sus planes, sobre todo cuando se convirtió en madre de cuatro.

Pero todo cambió cuando dos de sus hijos fueron diagnosticados con necesidades especiales. “Entonces decidí estudiar una carrera. Lo vi como una salvación para la vida de mis hijos, para tener una mejor calidad de vida y estabilidad económica”, dijo durante su ponencia.

Ella no lo sabía, pero esa decisión cambió su vida para siempre. Gracias a su profunda determinación logró concluir sus estudios y trabajar en dos lugares distintos al mismo tiempo que cuidaba a sus cuatro hijos. Finalmente, siguiendo el consejo de un profesor que la incentivó a explotar su potencial, aplicó para una estancia en la NASA.

Al principio, la mexicana tuvo muchas dudas. “No soy lo suficientemente inteligente, ya soy muy grande, tengo muchos hijos”, pensó. Sin embargo la aceptaron al mes de haber aplicado, y lo demás es historia.

“Se supone que la estancia duraba tres meses, pero la extendían cada vez que el plazo acababa. Una vez que pisé la NASA ya no me fui”, agregó.

Tips para alcanzar nuestros sueños

Al final de su conferencia, Ali Guarneros compartió con los asistentes algunas recomendaciones para seguir adelante y alcanzar nuestros sueños:

  1. Sueña en grande y aprende.
  2. Establece tus objetivos a corto y largo plazo.
  3. No tengas miedo y edúcate.
  4. No dejes que las circunstancias definan tu vida, tú defines tu destino.
  5. Siempre espera lo mejor, sé agradecido y sé tu mismo.
  6. Trata a los demás como quieres que te traten.
  7. Sé persistente y no te rindas.

(Fuente: tec.mx)

Continue Reading

La Ciencia y Tecnología

Crearon diamantes a temperatura ambiente

Published

on

Para realizar diamantes se requieren millones de años y enormes cantidades de presión. Científicos australianos crearon dos tipos distintos

Un grupo de científicos creó diamantes a temperatura ambiente. Es un abierto desafío a la Naturaleza: se necesitan millones de años y temperaturas altísimas para poder crearlos.

Los investigadores de la Universidad Nacional Australiana y la Universidad RMIT produjeron dos tipos de diamantes:

El normal, que puede encontrarse en un anillo de compromiso.
Y la Lonsdaleíta, que puede hallarse en el sitio de impactos de meteoritos como el Cañón Diablo, en Estados Unidos.

Un diamante es uno de los minerales de mayor valor en el mundo, debido a sus características física y ópticas. Es la segunda forma más estable de carbono, luego del grafito.

Los átomos de carbono se encuentran dispuestos en una variante de la estructura cristalina cúbica, lo que les da la peculiar forma.

“Los diamantes naturales se forman generalmente a lo largo de miles de millones de años, a unos 150 kilómetros de profundidad de la Tierra”, explica la profesora Jodie Bradby. “En ese lugar existen altas presiones y temperaturas por encima de los mil grados centígrados”.

Para crear el diamante a temperatura ambiente, los investigadores utilizaron técnicas de microscopía electrónica para capturar rebanadas de muestras experimentales. A partir de esas muestras se crearon los dos tipos de diamantes.

La Lonsdaleíta, el más curioso de todos los diamantes

El más curioso de los creados fue la Lonsdaleíta, llamado así en honor a la cristalógrafa Dame Kathleen Lonsdale. Cuenta con una estructura de cristal diferente al diamante regular.

“Tiene el potencial de ser utilizado para cortar materiales ultrasólidos en sitios mineros”, afirmó Bradby. “Crear más de este diamante raro, pero súper útil, es el objetivo a largo plazo de este trabajo”.

Para mayor información sobre el descubrimiento, puedes consultar en el siguiente link, que pertenece a la Universidad Nacional Australiana.

(Fuente: fayerwayer)

Continue Reading

Lo más visto

Copyright © 2020 Yucatán Informa.